Symplectic Topologies ∑ Incepta Physica Mathematica scroll down

Finger Tip Topologies
Σ
Hans Tilgner

🧾 𝔄𝔟𝔰𝔱𝔯𝔞𝔠𝔱  

 We sugguest to develop a series of finger tip topologies, generalising the concept of met­ric, to area, vo­lume, ... .
 Examples are taken from short exact sequences in some categories of algebra like groups, algebras, ... and from symplectic vector spaces.
 If it is possible to find axioms for areas, like those for metrics, it should be pos­sib­le to find axioms for volume such that there are vector spaces with volume.
 We expect examples from determinants and from pseudo-orthogonal vector spa­ces, where the topmost one-dimensional vector space in the exterior and Clif­ford-al­ge­bra has such a volume-structure. The special linear groups are their au­to­mor­phism groups and the traceless linear Lie algebras are their derivation Lie al­ge­bras.

 𝔍ncepta 𝔓hysica 𝔐athematica
 Links:  
 mass spectrum of elementary particles
__
 gravitational ⭍ waves ☚
 ☚ cosmology🧿 restmasses
 Weyl Poisson ☳ quantization ₪
 ↻ Archäologie ∴ Megalithkultur Havelquelle ↺
 ↻ Ethnologie∰ Mathematisierung ↺
☎  UTF-codes
first published
24. May 2002

revised upload
MetricLook at the concept of a metric in elementary topology: For a set  𝕄  a metric is a real-valu­ed map
𝕄 × 𝕄  —— ℝ   ,
fulfilling the three axioms reflexivity, sym­met­ry and the triangle un­equality. But, there is mis­sing some­thing, the concept is not complete, something has been overlooked by the mathematician's community: Stop here and remember, how a metric leads to a topology on  𝕄, using systems of neigh­bor­hoods. Still no idea? ... Re­think ... there is a con­cept in which metric is only the first of a se­ries of to­po­lo­gi­cal con­cepts, the best no­tion of which would be  finger tip topologies. Still no idea? ...

are the
real numbers
Metric-
Area-
Volume-

Topologies
Well – an  area  is a map
𝕄 × 𝕄 × 𝕄  ——  ℝ   ,
fulfilling the four (?) axioms: Skew symmetry against permutation of adjacent entries, Jaco­bi iden­ti­ty, the te­tra­eder in­equality and one (?) more axiom.  To de­fine a  neigh­bor­hood  one needs to con­struct the concept of a point of gravity, around which one can whirl a triangle of given area. The con­se­cu­tive  finger tip to­po­lo­gy  on  𝕄  in this line of argu­men­ta­tion is given by a  volume-map
𝕄 × 𝕄 × 𝕄 × 𝕄  —— ℝ   ,
subject to five (?) axioms. Thus the category of topolo­gical spaces contains also area-, vo­lu­me-, ... spa­ces be­sides the metric ones.
the map
Short
Exact
Sequences


Lie Groups
Lie Algebras
Examples of this area-concept should be given by symplectic manifolds, especially symplectic vec­tor spa­ces, i.e. pairs of a set  𝕄  and a skew map resp. bi­li­near form
𝕄 × 𝕄  —— ℝ   ,
the area being constructed in terms of the symplectic form. This topologises  𝕄  entire­ly in terms of the sym­plec­tic form and the area.
Other examples should come from the  2nd cohomology  of groups ( and some more algebraic cate­go­ries ), i.e. short exact se­quen­ces
𝔽  —— 𝔾  —— 𝕊   
of groups, where there exists a pair of maps Σ and Δ, fulfilling two axioms. There are two well-known spe­cial cases, the retract case, in which the left arrow has a commuting inverted one, and the split case, in which the right arrow has a commuting inverted one — in group-theo­re­ti­cal lan­guage retract- and se­mi-di­rect pro­ducts or equivalently -short exact sequences. When both come together we get a di­rect product. In the split case there is a skew map
𝕊 × 𝕊  —— 𝔽    ,
usually called σ, which in the case of sym­plectic vector spaces is the sym­plec­tic bi­linear form. In this case the re­sulting group  𝔾  is the  Heisen­berg group of quantum mecha­nics  and the se­cond ex­amp­le of an area map co­in­cides with the first one.
𝔽 𝔾 𝕊
are groups

and even

symmetric spaces

if the latter have a

2nd cohomology
and
short exact sequences
2nd
Cohomology
It would be nice to show that for all short exact sequences the third group  𝕊  carries an area map, con­struc­ted in terms of Σ and Δ .
 In case the group is a Lie group, there is a 2nd cohomology, carried over by the tangent functor to its Lie al­ge­bra and the same holds for  symmetric spaces  in the definition  of O. Loos  and their tangent struc­tures.
 In the direct case clearly both arrows in this short exact sequence have inverted arrows such that there is a com­mutative diagram of two short exact sequences.
 In general these tangent structures are Lie triples. But in the physical case of space-time they even are Jor­dan algebras, well-known to the Artin school of mathematics.
 In both cases there should be induced area maps.
in many
algebraic categories
 see any book on general and metric topology.
scroll up:start / topmetric spacesfinger tip topolshort exact sequeLie theory2nd Cohomology
 
Literature with commentswith [ links to publications] and [ conference books]
[Bou]N Bourbaki  Algebra I  Hermann, Paris [1970] ISBN 2 7056 5675 8  remains the standard in­for­ma­tion on universality in al­ge­bra and chap. III §6 in that on sym­me­tric algebras.
[Col]G P Collins  Die Lösung eines Jahrhundertproblems  Spektrum der Wissenschaft Sep [2004] pp 86-94  translated from the  Sci­en­ti­fic Ame­ri­can  on re­sults of Pe­rel­man for 3-di­mensional spaces.
[Fmk]A F Fomenko  Differential Geometry and Topology  Consultants Bureau, NY [1987]  translated from Russian with more re­fe­ren­ces.
[God]C Godbillon  Géometrie Différentielle et Mécanique Analytique  Hermann, Paris [1969]  de­fi­nes Pois­son brackets on p 125.
[How]R E Howe  On the Role of the Heisenberg Group in Harmonic Analy­sis  Bull. Am. Math. Soc 3 no 2 [1981] pp 821-843
[How]R E Howe  Remarks on Classical Invariant Theory  Trans. Am. Math. Soc 313 no 2 [1989] pp 539-570
[Kch]M Köcher  The Minnesota Notes on Jordan Algebras and Their Applications  Springer Lecture Notes in Mathematics 1710 [1999] His con­cept of mutations IV §2 still has to be included here.
[Kow]O Kowalski  Partial Curvature Structures and Conformal Transformations  J. Differential Geometry 8 [1973] pp 53-70
[ Ku l ]R S Kulkarni  Curvature and Metric  Annals of Mathematics 91 [1970] pp 311-331   follows, together with Katsumi Nomizu and Oldrich Kowalski, the cur­va­ture axioms Singer & Thorpe's.
[K70]R S Kulkarni  Curvature Structures and Conformal Transformations  J. Differential Geometry 4 [1970] pp 425-451
[ Lic ]A Lichnérowicz  Ondes et Radiations Électromagnétique et Gravitationelles en Relativité Générale  Annali di Mate­ma­ti­ca Pu­ra & Appl. 4 [1960] pp 1-95  is a very elegant representation of the concept, although written in the old-­fashioned in­dex no­ta­tion. We rate this work as  t h e  major contribution to gravitational radiation end even to general relativity after Einatein !
[Loo]O Loos  Symmetric Spaces I + II  Benjamin N.Y. [1969] no ISBN  We only use the first volume. We generalize his symme­tric mul­ti­pli­ca­tion from hyperboloids (spheres) to arbitrary elements outside null-cones, this being well-known to the Artin school of ma­the­ma­tics, and this in turn to the complex case of pseudo-Hilbert spaces.
 One of the main points, following from Loos' definition of a symmetric space, is that instead of studying  ℂℂ*-algebras -in quan­tum me­cha­nics - one should study algebras with an in­volu­tion ( in­stead of the *-anti-involution ).
[L&N]O Loos, E Neher  Reflection Systems and Partial Root Systems  Forum Math 23 [2011] pp 349-411  see also
O Loos, E Neher  Locally Finite Root Sys­tems   Mem Am Math Soc 171 n°811 [2004] pp 1-214
[Nom]

[KOT]
 
K Nomizu  The Decomposition of Generalized Curvature Tensor Fields  pp 335-345 
 in
S Kobayash, M Obata, T Takahashi (ed.) Differential Geometry in Ho­nor of Ken­ta­ro Yano  Kinukuniya, Tokyo [1972]
not on­line and no ISBN.
[Poi]H Poincaré  Sur la Dynamique de l'Électron  Comptes Rendus de l'Académie de France  [1905] pp 1504-1508  first launched the con­cept of  gravitational waves  in the framework of special relativity only, however.
[Pos]E J Post  Formal Structure of Electromagnetics  North Holland, Amsterdam [1962] no ISBN is an inspiring book, though writ­ten in an old-fashio­ned way with indices: The electromagnetic constituency 4-tensor between the 2-tensors (4×4 matrices) of field-strengths and -in­ten­si­ties has the same symmetries as a curvature tensor.
[Seg]I Segal  A variant of Special Relativity  Pergamon, N.Y. [1969] no ISBN  did first have this idea on a  aariant  between special and general relativity. Together with Loos' concept of  loacally symmetric spaces  this should lead to a quantization of general re­la­tivity.
[S&T]

[ S&I ]
 
M Singer, J A Thorpe  The Curvature of 4-Dimensional Einstein Spaces  pp 355-366
 in
D C Spencer, S Iyanaga (ed.)  Global Analysis : Papers in Ho­nor of K Koda­ira  Prin­ce­ton University Press, Princeton N.J. [1969] no ISBN 
is the basic work to formulate  general relativity  in a modern mathematical lan­gua­ge.
[Sou]J-M Souriau  Structure des Systèmes Dynamiques  Dunod, Paris [1970] no ISBN  remains the classic book uniting theo­re­ti­cal phy­sics and mo­dern ma­the­ma­tics. There is an eng­lish trans­la­tion:
[Sou]J-M Souriau  Structure of Dynamical Systems  Birkhäuser, Basel [1997] ISBN 0 8176 3695 1  de­fines the basis-free Pois­son bracket on p 88.
[Til]H Tilgner  A Class of Solvable Lie Groups and Their Relation to the Canonical Formalism  Ann. Inst. H. Poin­caré Sec. A Phy­si­que Théo­rique 13 no 2 [1972] pp 103-127
[T77]H Tilgner  Graded Generalization of Weyl and Clifford Algebras  J. Pure Appl. Algebra 10 no 2 [1977] pp 163-168 
[T78]H Tilgner  The Group Structure of Pseudo-Riemannian Curvature Spaces  J.Math.Phys. 19 [1978] pp 1118-1125  shows how ele­gant­ly in- resp. co­variance groups can be chased around Singer & Thorpe's curvature diagrams.
[T84]H Tilgner  Conformal Orbits of Electromagnetic Rie­man­nian Cur­va­ture Ten­sors – Elec­tro­mag­ne­tic Implies Gra­vi­ta­tio­nal Ra­dia­tion  pp 317-339 in Springer Lecture Notes in Mathematics 1156 [1984]  ISBN 0 387 15994 0  has more details and re­fe­ren­ces on the ma­the­ma­ti­cal description of electromagnetic and gravitational radiation.

 

    try browsers

 ⟨ ≡ 〈 ≡ x2329 ≡ 〈 ≡ 9001 ≡ lang     ||     ⟩ ≡ 〉 ≡ x232A ≡ 〉 ≡ 9002 ≡ rang    ||     ⟨,⟩ ≡ lang,rang
 ➥ ≡ 10149     ||     ⓣ ≡ 9443     ||     ∂ ≡ 8706
  ◊ ≡ loz     ||     ⋄ ≡ 8900     ||     ♦ ≡ diams ≡ 9830     ||     ▰ ≡ 9648     ||     ▱ ≡ 9649
 aber   ⊟ ≡ 8863   als Index ist das beste Zeichen für eine Lie algebra neben −
 
ḑ ≡ 7697ઠ ≡ 2720ծ ≡ 1390ð ≡ ethδ ≡ deltaᎴ ≡ 5044Ẍ ≡ 7820Ẋ ≡ 7818☓ ≡ 9747
ɂ ≡ 578ɖ ≡ 598⨆ ≡ 10758⨳ ≡ 10803𐰫 ≡
66651
𐰪 ≡
68650
𐡒 ≡
67666
𐦰 ≡
68016
⦚≡10650
Lichtkegl
ă ≡ 259ᾰ ≡ 8112ӑ ≡ 1233&#..; ≡ b ?č ≡ 269ě ≡ 283ğ ≡ 287ǧ ≡ 487ȟ ≡ 543
ĭ ≡ 301ǐ ≡ 464ῐ ≡ 8144ǰ ≡ 496ǩ ≡ 489ň ≡ 328ŏ ≡ 335ř ≡ 345š ≡ 353
š ≡ 154ž ≡ 158ĕ ≡ 277&#...; ≡ ...
Serie:ǎ ≡ 462ǐ ≡ 464ǒ ≡ 466ǔ ≡ 468ŭ ≡ 365ǔ ≡ 468ῠ ≡ 8160ž ≡ 382
InneresVorwärtsLichtkegel
ȧ ≡ 551ḃ ≡ 7683ċ ≡ 267ḋ ≡ 7691ė ≡ 279ḟ ≡ 7711ġ ≡ 289
ḣ ≡ 7715ṁ ≡ 7745ȯ ≡ 559ṗ ≡ 7767ṙ ≡ 7769ṡ ≡ 7777ṫ ≡ 7787
ù ≡ 249 ?&#; ≡ v ?;ẇ ≡ 7815ẋ ≡ 7819ẏ ≡ 7823ż ≡ 380
rückwärts
ạ ≡ 7841ᾳ ≡ 8115ḅ ≡ 7685ḍ ≡ 7693ẹ ≡ 7865ḥ ≡ 7717ị ≡ 7883ḳ ≡ 7731
ḷ ≡ 7735ṃ ≡ 7747ṇ ≡ 7751ọ ≡ 7885ṛ ≡ 7771ṣ ≡ 7779ṭ ≡ 7789ș ≡ 537ţ ≡ 355
ụ ≡ 7909ṿ ≡ 7807ẉ ≡ 7817ỵ ≡ 7925ẓ ≡ 7827
LangVokal
ā=ā ≡ 257
amacr
ᾱ ≡ 8113≠
alphamacr
ē=ē ≡ 275
emacr
ī ≡ 299
ī≡imacr
ῑ ≡ 8145ō ≡ 333
ō≡omacr
ū ≡ 363
ū≡umacr
Τ ≡ 832
≠ &lmacr;
ȳ≡ 563
≠&ymacr;
Konsonantebenso
ḡ ≡ 7713
≠&gmacr;
oder auch
ḇ ≡ 7687ḏ ≡ 7695ǥ ≡ 485ẖ ≡ 7830ḵ ≡ 7733ḻ ≡ 7739
≠&lmicr;
ṉ ≡ 7753
≠&nmicr;
ṟ ≡ 7775ṯ ≡ 7791
ẕ ≡ 7829
.
SondrZei
‘ ≡
lsquo
’ ≡
rsquo
⣏ ≡
10447
⣹ ≡
10489
⣏x⣿y⣹⢎ ≡
10382
⡱ ≡
10353
⢎⢸⡇⡱᠞ ≡ 6174
.
≺≡8826≻≡8827₪≡8362⊞≡8862■≡9632∎≡8718▣≡9635ѻ≡1147𝕄 ≡ Mopf
.
ɑ≡593ℒ≡8466ℓ≡8467ℎ≡8462ℯ≡8495ℴ≡8500ɡ≡609ℊ≡8458፪≡4970
ᦔ≡6548ℐ≡8464ℑ≡8465Ƥ≡420Ꮤ≡5076၂≡4162Ĵ≡308ʝ≡669፫≡4971
ᚹ≡5817ᚸ≡6816ឋ≡6027˟≡735ᚸ≡5816ᳲ≡7410⪤≡10916⩆≡10822♉≡9801
ʤ ≡
676
dz ≡
499
ẟ ≡
7839
⸹ ≡ 11833⸎ ≡ 11790⭍ ≡ 11085ㄅ ≡ 12549⻈ ≡
11976
〜 ≡
12316
⪥ ≡
10917
⤫ ≡
10539
⤬ ≡
10540
✕ ≡
10005
⸎ ≡
10006
ᛤ ≡
5860
❎ ≡
10062
⦄ ≡
10628
⦅ ≡
10629
↱≡8625↲≡8626╠≡9568╣≡9571Ⅼ≡8556—≡8212―≡8213‖≡8214∣≡8739


.
&xcaron;≡
xcaron
ˇ≡caron
&xbreve;≡
xbreve
˘≡breve
&xdot;≡
xdot
˙≡dot
&xogon;≡
xogon
˛≡ogon
&xstrok;≡
xstrok
≡&strok;
&xmacr;
≡xmacr
¯≡macr
𝓍≡xscr
ℒ ≡Lscr
&scr;≡scr
𝕍≡Vopf
𝔼≡Eopf
𝕥≡topf
&xcedil;≡
xcedil
¸≡cedil
.
&xtilde;≡
xtilde
&xacute;≡
xacute
&xgrave;≡
xgrave
&xdblac;≡
xdblac
&xuml;≡
xuml
◯≡
xcirc
&xring;≡
xring
𝕤≡
sopf
&xmath;≡
xmath
.
&xelig;≡
xelig
&xlig;≡
xlig
&xgreen;≡
xgreen
&xslash;≡
xslash
&xmidot;≡
xmidot
&xnodot;≡
xnodot
&xnof;≡
xnof
𝕩≡
xopf
ƒ≡
fnof
.
ˆ≡
circ
¸≡
cedil
&green;≡
green
&slash;≡
slash
&midot;≡
midot
&nodot;≡
nodot
&nof;≡
nof
&opf;≡
opf
&lig;≡
lig
.
{≡lcub}≡rcub>>≡gt GT¦≡
brvbar
·≡
middot
·≡
centerdot
•≡
bull
«≡
laquo
&sub1;≡
sub1

.
܅≡1797ˍ≡717˅≡709̌≡780ˇ≡711῏≡8143Ⴭ≡4301╣x║y╠╣x╏y╠

.
íℯ(.)
gut
𝓁𝒾ℯ
ίℯ(.)ιℯ(.) jota
ℓ𝒾ℯ𝔾
𝕝𝕚𝕖𝔾
íℯ(.)

𝕝ie𝔾
ss p( , )
𝕊pℙ
𝕤𝕡p
∋≡8715℈≡8456સ≡2744

.
⭮ ≡
11118
⤾ ≡
10558
⮨ ≡
11176
⌣ ≡
8995
‿ ≡
8255
⏝ ≡
9181
⊔ ≡
8852
␧ ≡
9255

9012
᚜ ≡
5788
᚛ ≡
5787
ᛃ ≡
5827
ℓ ≡
8467
Ῐ ≡
8152
Ĭ ≡
300
Ꭻ ≡
5035

9932

8251
፠ ≡
4960
የ ≡
4840
፻ ≡
4987
Ꮲ ≡ P
5090
🩀 ≡
129600
🪤 ≡
127000
🦨 ≡
129448
🐀 ≡
128000
🟨 ≡
129000
🦧 ≡
129447
🦨 ≡/
129448
&skunk;
🦩 ≡
129449
🦪 ≡
129450
🦫 ≡
129451
&Ape;
🦬 ≡
129452
&pen;
🕮 ≡/
128366
&Book;
🦮 ≡/
129454
&dog;
🦯 ≡
129455
🦰 ≡
129456
🦱 ≡
129457
🦲 ≡
129458
🦳 ≡
129459
🦴 ≡
129460
🦵 ≡
129461
🦶 ≡
129462
🦷 ≡
129463
🦸 ≡
129464
🦹 ≡
129465
🦺 ≡
129466
🦻 ≡
129467
🦼 ≡
129468
🦽 ≡
129469
🦾 ≡
129470
🦿 ≡
129471
🧀 ≡
129472
🧁 ≡
129473
🧂 ≡
129474
🧃 ≡
129475
🧄 ≡
129476
🧅 ≡
129477
🧆 ≡
129478
🧇 ≡
129479
🧈 ≡
129480
🧉 ≡
129481
🧊 ≡
129482
🧋 ≡
129483
🧌 ≡
129484
🧍 ≡
129485
🧎 ≡
129486
🧏 ≡
129487
🧐 ≡
129488
🧑 ≡
129489
🧒 ≡
129490
🧓 ≡
129491
🧔 ≡
129492
🧕 ≡
129493
🧖 ≡
129494
🧗 ≡
129495
🧘 ≡
129496
🧙 ≡
129497
🧚 ≡
129498
🧛 ≡
129499
🧜 ≡
129500
🧝 ≡
129501
🧞 ≡
12502
🧟 ≡
129503
🧠 ≡
129504
🧡 ≡
129505
🧢 ≡
129506
🧣 ≡
129507
🧤 ≡
129508
🧥 ≡
129509
🧦 ≡
129510
🧧 ≡
129511
🧨 ≡
129512
🧩 ≡
129513
🧪 ≡
129514
🧫 ≡
129515
🧬 ≡
129516
🧭 ≡
129517
🧮 ≡
129518
🧯 ≡
129519
🧰 ≡
129520
🧱 ≡
129521
🧲 ≡
129522
🧳 ≡
129523
🧴 ≡
129524
🧵 ≡
129525
🧶 ≡
129526
🧷 ≡
129527
🧸 ≡
129528
🧹 ≡
129529
🧺 ≡
129530
🧻 ≡
129531
🧼 ≡
129532
🧽 ≡
129533
🧾 ≡
129534
🧿 ≡
129535
ℭ𝔓xu𝔗
ᑭ ≡
5229
ᱞ ≡
7262
𐡒 ≡
67666
૭ ≡
2797
ᱧ ≡
7271
ᱬ ≡
7276
ᱽ ≡
7293
ᵱ ≡
7537
␠ ≡
9248
Ῥ ≡
8172
Ⲣ ≡
11426
↯ ≡
8623
⭍ ≡
11085
⨇ ≡
10759
⨈ ≡
10760
Ⱎ ≡
11294
⨰ ≡
10800
⨉ ≡
10761
Ⱀ ≡
11280
Ᵽ ≡
11363
⬶ ≡
11062
⩔ ≡
10836
⩕ ≡
10837
⩖ ≡
10838
Ⱎ ≡
11294
⬬ ≡
11052
⬭ ≡
11053
Ⲭ ≡
11436
㇣ ≡
12771
ㄗ=P ≡
12567
⼫ ≡
12075
Ⱞ ≡
11310
⩖ ≡
10838
Ⱳ ≡
11378
ⱳ ≡
11379
ⱱ ≡
11377
Ꮪ ≡
5082=S
Ꮱ ≡
5089
⚐ ≡
9872
⚑ ≡
9873
ᳱ ≡
7409
ᘮ ≡
5678
℧ ≡
8487
ᙀ ≡
5696
ប ≡
6036
Ⴧ ≡
4295
Ⴝ ≡
4285
Տ ≡
1359
⺋ ≡
11915
⼰ ≡
12080
⼐ ≡
12048
ㄩ ≡
12585
႗ ≡
4247
ປ ≡
3739
ၓ ≡
4179
ಽ ≡
3261
ჷ ≡
4343
ჽ ≡
4349
ᗉ ≡
5577
ᗆ ≡
5574
ⴝ ≡
11549
ട ≡
3359
Մ ≡
1348
ઽ ≡
2749
ऽ ≡
2365
ડ ≡
2721
ߎ ≡
1998
ម ≡
6040
ᘴ ≡
5684
ᘢ ≡
5666
ப ≡
2986
য ≡
2479
ꇙ ≡
41433
𐍃 ≡
66371
𐍊 ≡
66378
ꂀ ≡
41088
𐋇 ≡
66247
כ ≡
1499
၁ ≡
4161
ι ≡
iota
𓍝 ≡
61685
𐠔 ≡
67604
𐠲 ≡
67634
𐠴 ≡
67636
𐠂 ≡
67586
𐐕 ≡
66581
𐐣 ≡
66595
𐦰 ≡
68016
⫖ ≡
10966
𐩕 ≡
68181
Ỻ ≡
7930
Ꮤ ≡
5076
ဝ ≡
4125
လ ≡
4124
ᔓ ≡
5395
ᔔ ≡
5396
⮤⮥ ⭦⭧
↰_↱ ⮬⮭
ᄽ ≡
4413
Ⴘ ≡
4280
≺| ≡
8826
|≻ ≡
8827
⊀| ≡
8832
|⊁ ≡
8833
⟪ ≡
10218
⟫ ≡
10219
⮲_⮳ ⭦⭧
↰_↱ ⮬⮭
ℝ ≡
8477
ℤ ≡
8484
⨇ ≡
10759
⨈ ≡
10760
Ⳙ ≡
11480
⨆ ≡
10758
ℂ ≡
8450
ℍ ≡
8461
ℙ ≡
8473
ℚ ≡
8474
ℕ ≡
8469
⦓ ≡
10643
⦔ ≡
10644
⦕ ≡
10645
⦖ ≡
10646
⪻ ≡
10939
⪼ ≡
10940
⩽ ≡
10877
⩾ ≡
10878
⫹ ≡
11001
æ(G) ∘ ○æ(G)∘ ≡ 8728○ ≡ 9675◌ ≡ 9676° ≡ 176º ≡ 186œæᒼ
Ԗ> ≡ 1302Ƿ ≡ 503œ ≡ 156Ҏ ≡ 1166ᖘ ≡ 5528₱ ≡ 8369⁋ ≡ 8267∐ ≠ ⭮
8720
℗ ≡ 8471
ⅽ ≡ 8573င≡4100ᒼ ≡ 5308ᄃ≡4355ᆮ≡4526ເ ≡ 3776ᛃ ≡ 5827ᣞ ≡ 6366᠞ ≡ 6174
⊔︀ ≠ ⭮
sqcups

sqcup
𝕍≡Vopf𝒱≡Vscr𝕄≡Mopfℳ≡Mscr☎ ≡
phone
𝔼 ≡ Eopf𝕃 ≡ Lopf
&book; ≡
book
&books;
books
𝔻≡Dopf𝒯≡Tscrℕ≡Nopf𝒪≡Oscr𝔹 ≡
Bopf
ℂ ≡
Copf
𝕎 ≡
Wopf
&click; ≡
click
&view;
view
&page;≡
page
&clear;≡
clear
&cl;≡
cl
&vw;≡
vw
&bk;
≡bk
&pg; ≡
pg
&pag; ≡
pag
&bell; ≡
bell
&Bell;
Bell
☾≡9790☽≡9789◖≡9686◗≡9687◀≡9664▶ ≡9564⌰ ≡9008
𫝏 ≡
177999
𮊫
189099
𰦻≡
190999
𫙱≡
177777
𫝐≡
178000
𭹠≡
188000
𭻏≡
1881111
𭼾 ≡
188222
𮀜 ≡
188444
.
〈≡9001〉≡9002❮≡10094❯≡10095≮≡8814≯≡8815&see;≡
see
&look; ≡
look
≝ ≡8797
≠&def;
⫷≡10999⫸≡11000⦅≡10629⦆≡10630⮘≡11160⮚≡11162⮜≡11164⮞ ≡11166⪡⪢≡10913
⭮ ≡
↻ ≠ ↻
⭯ ≡
↺ ≠ ↺
š ≡
scaron
&ocaron;≡
ocaron
Ô≡
ocirc
𝒪 ≡
oscr
&Mtilde; ≡
Mtilde
ñ ≡
ntilde
𝕋 ≡
Topf

 
Buchstaben des arabischen Alphabet's
NCR
dez
arabdeutsch[Spi] [Stg]    [Whr]  [WBS] 
Nr.UTF-8arabphonphonTrans
1.1575اAlifaa/.../aaaɂ
2.1576بBaab/vbbbb
p
3.1578تThaattttt
4.1579ثθaaθ/t/sss-θ
5.1580جDschiim g/j/dschgjǧjݼ≡1916
č
6.1581حHaahhح
7.1582خChaachh••xݗ≡1879
8.1583دDaalddddd
9.1584ذDhaalthz
10.1585رRaarrhrrr
11.1586زSsaaisszzzz
12.1587سSiinsssss
13.1588شSchiinschśššݽ≡1917
14.1589صSsadss
15.1590ضDaaddd
16.1591طTtaatt
17.1592ظZaazzzz-
18.1593ع='=ˁ'Ain'''ˁع
19.1594غGhainfr. rġgġ or ḡġ
20.1601فFaafffff
21.1602قKkaafkkqqqq
g
22.1603كKaafkkkkk
23.1604لLaamlllll
24.1605مMiimmmmmm
25.1606نNuunnnnnn
26.1607هHaahhhhh
27.1608وWaawuu/u/auw/u/auwww
28.1610يYaaiiyyyy
 
häufig1577ة+t,+a,+hTamarbuta


.

5 more Links
in the Box

 Suzanne Roman webDesign
Suzanne Roman
Australia